Понятия со словосочетанием «оптимальное решение»
Оптимальное решение является результатом одного из видов выбора (критериального выбора). Изучением проблем, связанных с выбором оптимальных решений, занимаются теория исследования операций и теория принятия решений.
Связанные понятия
Стохастическая оптимизация — класс алгоритмов оптимизации, использующая случайность в процессе поиска оптимума. Случайность может проявляться в разных вещах.
В теории вычислимости
алгоритмически неразрешимой задачей называется задача, имеющая ответ да или нет для каждого объекта из некоторого множества входных данных, для которой (принципиально) не существует алгоритма, который бы, получив любой возможный в качестве входных данных объект, останавливался и давал правильный ответ после конечного числа шагов.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Гиперэвристика (гиперэвристический алгоритм) — эвристический метод поиска, направленный на автоматизацию процесса выбора, комбинирования, обобщения или адаптации нескольких более простых эвристик (или их частей) для эффективного решения вычислительной задачи.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации...
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности.
Функция приспособленности (англ. fitness function) — вещественная или целочисленная функция одной или нескольких переменных, подлежащая оптимизации в результате работы генетического алгоритма, направляет эволюцию в сторону оптимального решения. Является одним из частных случаев целевой функции.
Многокритериальная оптимизация, или программирование (англ. Multi-objective optimization) — это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Комбинаторный взрыв — термин, используемый для описания эффекта резкого («взрывного») роста временной сложности алгоритма при увеличении размера входных данных задачи.
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
Критерий Сэвиджа — один из критериев принятия решений в условиях неопределённости. Условиями неопределённости считается ситуация, когда последствия принимаемых решений неизвестны, и можно лишь приблизительно их оценить.
Критерий оптимальности (критерий оптимизации) — характерный показатель решения задачи, по значению которого оценивается оптимальность найденного решения, то есть максимальное удовлетворение поставленным требованиям. В одной задаче может быть установлено несколько критериев оптимальности.
Метод секущих плоскостей позволяет находить решение задачи целочисленного программирования как задачи линейного программирования путём добавления дополнительных ограничений. Главная идея метода — добавление ограничений, которые нарушаются для оптимума задачи линейного программирования, но остаются верными для оптимума исходной задачи.
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
Детерминированный алгоритм — алгоритмический процесс, который выдаёт уникальный и предопределённый результат для заданных входных данных.
Точно решаемая задача — какая-либо задача теоретической физики, ответ для которой может быть записан в виде элементарных или известных специальных функций.
Автоматическое планирование и диспетчеризация (англ. Automated planning and scheduling, APS) — область задач искусственного интеллекта, касающаяся выполнения стратегии или последовательности действий, обычно для интеллектуальных агентов, автономных роботов и беспилотных аппаратов. В отличие от классических проблем управления и классификации, решения задач данной области комплексны, неизвестны и должны разрабатываться и оптимизироваться в многомерном пространстве.
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
Цель (кибернетика) — желаемое состояние кибернетической системы, достигаемое в управляемом процессе развития системы. Состояние системы, как и её траектория в пространстве состояний, оценивается с точки зрения их соответствия или несоответствия цели. Математически выражением такой оценки является целевая функция, целевой функционал или критерий качества системы, критерий оптимизации.
Алгори́тм Бо́га — понятие, возникшее в ходе обсуждения способов решения кубика Рубика. Термин может также быть использован в отношении других перестановочных головоломок. Под алгоритмом Бога головоломки подразумевается любой алгоритм, который позволяет получить решение головоломки, содержащее минимально возможное число ходов (оптимальное решение), начиная с любой заданной конфигурации.
Риманова оптимизация — собирательное название техник для решения оптимизационных задач, заданных на римановых многообразиях.
Критерий Вальда (максиминный критерий) — один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма.
Риск (теория принятия решений) — математическое ожидание функции потерь вследствие принятия решения. Является количественной оценкой последствий принятого решения. Минимизация риска является главным критерием оптимальности в теории принятия решений.
Алгоритмы локального поиска — группа алгоритмов, в которых поиск ведется только на основании текущего состояния, а ранее пройденные состояния не учитываются и не запоминаются. Основной целью поиска является не нахождение оптимального пути к целевой точке, а оптимизация некоторой целевой функции, поэтому задачи, решаемые подобными алгоритмами, называют задачами оптимизации. Для описания пространства состояний в таких задачах используют ландшафт пространства состояний, в этом представлении задача сводится...
Подробнее: Локальный поиск (оптимизация)
Систе́ма подде́ржки приня́тия реше́ний (СППР) (англ. Decision Support System, DSS) — компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной деятельности. СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных.
Дескриптивные методы принятия решений — это оценочно-описательный метод исследования, направленный на эмпирическое исследование и описание поведения отдельных лиц и групп людей в процессе принятия решений. Она носит ярко выраженный объясняющий, а не предписывающий характер.
Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества. Задача, в которой динамическая система описывается линейными дифференциальными уравнениями, а показатель качества представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления. Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы...
Минимакс — правило принятия решений, используемое в теории игр, теории принятия решений, исследовании операций, статистике и философии для минимизации возможных потерь из тех, которые лицу, принимающему решение, нельзя предотвратить при развитии событий по наихудшему для него сценарию.
Некоторые модели человеческого поведения в общественных науках предполагают, что поведение людей может быть описано в предположении, что люди ведут себя как «рациональные» существа (смотри, например, теорию рационального выбора). Во многих экономических моделях полагается, что люди гиперрациональны и никогда не делают чего бы то ни было, что противоречит их интересам. Концепция ограниченной рациональности подвергает эти положения сомнению с целью учесть, что в действительности совершенно рациональные...
Подробнее: Ограниченная рациональность
Зада́ча — проблемная ситуация с явно заданной целью, которую необходимо достичь; в более узком смысле задачей также называют саму эту цель, данную в рамках проблемной ситуации, то есть то, что требуется сделать. В первом значении задачей можно назвать, например, ситуацию, когда нужно достать предмет, находящийся очень высоко; второе значение слышно в указании: «Ваша задача — достать этот предмет». Несколько более жёсткое понимание «задачи» предполагает явными и определёнными не только цель, но и...
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Последовательное квадратичное программирование (англ. Sequential quadratic programming (SQP)) — один из наиболее распространённых и эффективных оптимизационных алгоритмов общего назначения, основной идеей которого является последовательное решение задач квадратичного программирования, аппроксимирующих данную задачу оптимизации. Для оптимизационных задач без ограничений алгоритм SQP преобразуется в метод Ньютона поиска точки, в которой градиент целевой функции обращается в ноль. Для решения исходной...
Оптимизация — процесс максимизации выгодных характеристик, соотношений (например, оптимизация производственных процессов и производства), и минимизации расходов.
Скалярное ранжирование — подход к решению многокритериальных задач принятия решений, когда множество показателей качества (критериев оптимальности) сводятся в один с помощью функции скаляризации — целевой функции задачи принятия решения.
Вероятностное округление — это широко используемый подход для разработки и анализа таких аппроксимационных алгоритмов. Базовая идея — использование вероятностного метода для преобразования соответствующей оптимального решения задачи линейного программирования (ЛП) в приближённое к оптимальному решению исходной задачи.
Жадный алгоритм — алгоритм, заключающийся в принятии локально оптимальных решений на каждом этапе, допуская, что конечное решение также окажется оптимальным. Известно, что если структура задачи задается матроидом, тогда применение жадного алгоритма выдаст глобальный оптимум.
Баскет-метод (ин-баскет или ин-трей, от англ. in-basket test, in basket technique, англ. basket/tray — корзина/поднос, лоток) — метод оценки и обучения, основанный на имитации ситуаций, часто встречающихся в практической деятельности.
Квадрати́чная зада́ча о назначе́ниях (КЗН, англ. Quadratic assignment problem, QAP) — одна из фундаментальных задач комбинаторной оптимизации в области оптимизации или исследования операций, принадлежащая категории задач размещения объектов.
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
В вычислительной математике, безматричный метод это алгоритм для решения СЛАУ или решения задачи нахождения собственных значений, который не использует отдельное хранение матрицы коэффициентов, но обращается к матрице через произведения матриц-векторов. Безматричные методы предпочтительнее, когда матрица слишком большая для хранения и работа с ней требует больших объемов памяти и вычислительного времени, даже если матрица разреженная.
Подробнее: Безматричные методы
Корректно поставленная задача в математике — прикладная задача, математическое решение которой существует, единственно и устойчиво. Происходит от определения, данного Жаком Адамаром, согласно которому математические модели физических явлений должны иметь следующие свойства...
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.